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Reactions in systems with mixing 
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Federal Republic of Germany 

Received 13 August 1990 

Abstract. We study the evolution of the concentrations of reactants which perform the 
irreversible reaction A +  B-0. The reactants are initially separated and are contained i n  
a system undergoing mechanical mining. We introduce a continuous mixing model which 
is related to Baker’s transformation: the continuous aspect makes i t  possible to implement 
mixing in a reaction-diffusion scheme. Furthermore, under very weak requirements, we 
succeed in presenting analytical expressions for the decay: we show that the initial reaction 
stages are controlled by mixing so that the concentration of reactants follows the mixing 
(exponential) time pattern. Furthermore we show that for the usual values of the pertinent 
parameters (size of the system, diffusion constants, microscopic reaction rates) the standard 
diffusion-controlled mechanism is recovered only when the reactants are completely mixed. 

1. Introduction 

In recent years the investigation of diffusion-controlled reactions in different physical 
and chemical systems has received much attention. In particular, it was found that 
even for the simplest irreversible bimolecular reactions in systems without external 
stirring, in which the reactants diffuse and react on contact, the decay of concentrations 
does not, in general, obey the formal kinetics predictions; the long-time behaviour is 
mainly governed by the initial fluctuations of reactant concentrations [I-61. Usually 
it is assumed that under vigorous stirring and for slow (reaction-controlled) reactions 
the system should become homogeneous, and that the standard classical kinetics should 
apply. For less intensive stirring the problem of reactions in systems with mixing is 
much more complicated. 

As discussed by Ottino ef a/ [7-91 the mechanical mixing of two liquids in laminar 
flows produces a quasi-one-dimensional lamellar structure of the (initially separated) 
A and B reactants. In [lo-121 one envisages a thermally activated A+B+O reaction. 
Then, by keeping for f < 0 the temperature low one may mix the non-reacting liquids. 
At f = 0 mixing stops and the irreversible reaction is switched on by heating the system. 
Mixing of non-reacting liquids is well represented by a structure consisting ofalternating 
striations of the two different liquids. The characteristic striation thickness becomes 
smaller via mixing; thus both the mean thickness and also the distribution of striation 
thicknesses depend on the mixing device used and on the overall time of mixing. 

Note that in this model mixing and reaction are separated in time. A numerical 
study of this model (reaction in a medium with striations) was presented by Muzzio 
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and Ottino [lo, 111, who asserted that the model reproduces well the geometrical 
properties of mixed substances. We have studied the same model analytically and 
showed that the decay law of the reactants' concentrations may depend in a subtle 
manner on the initial distribution of striation thicknesses [12]. 

We note also that in [13] and [14] numerical investigations of reactions under 
mixing are reported; there the particles are mixed by randomly picking some of them 
from time to time and placing them in new positions. The works show that under this 
procedure the classical kinetics results are recovered. However we hasten to note that 
this very interesting model does not closely follow real mixing, where one usually 
cannot take particles out from the system, reshuffle them and reinsert them at precise 
spots. Also the size of the systems used in computer simulations may be too small to 
highlight the (highly complex) intermediate-time range where the components are not 
yet fully mixed, but where particles already react significantly. We will focus on this 
situation in the present work. 

We note that in all mixing processes the layers containing different reactants get 
folded and squeezed. As already stated, laminar mixing of two liquids often produces 
a lamellar structure of alternating striations. The distribution of thicknesses of these 
striations depends on the mixing device used: thus the mean value of the thickness 
becomes smaller with increasing mixing time. 

We shall consider a system consisting of equal amounts of liquids which contain 
equal concentrations (say co- cm-') of reactants A and E. The hydrodynamic 
properties of the liquids are assumed to be independent of the A and B concentrations. 
Furthermore the reaction A+ B+O is taken to occur irreversibly, without disturbing 
the physical properties (temperature, viscosity etc) of the liquid. To fix the ideas on 
the characteristic macroscopic scales we envisage a teacup, stirred with a teaspoon. 
The typical length scale Io is then 1 cm and the typical time T~ is 1 s. For simplicity we 
take the diffusion coefficients D of the particles to be equal; for aqueous solution 
values around lo-' cm2s-I are usual (e.g. [ I S ] ) .  
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2. From Baker's transformation to a continuous model of mixing 

The simplest model of mixing corresponds to the so-called Baker's transformation (e.g. 
[9, p 1191). The transformation maps a unit square into itself. It can be formulated in 
various forms, for example as the mapping (x,y)+(x ' ,  y ' ) ,  according to the rule: 

y'={2y} x '=  (x+[y'])/2 (1) 

where { y }  and [ y ]  denote the fractional and the whole parts of y ,  respectively, i.e. for 
T one has [ r] = 3 and { T) = 0.141 5 9 .  . . . Of course, the transformation is volume- 
conserving. It corresponds to an ideal mixing device, whose mixing cycle consists of 
the three stages (i) squeezing, (ii) cutting and (iii) fusing. We shall denote the time to 
complete one cycle by T ~ .  This transformation is not realized in flow systems because 
i t  is discrete and discontinuous. Nevertheless, it displays the main features of mixing. 
The stages of the mixing cycle corresponding to ( I )  are shown in figure 1. 

As three-dimensional analogues of Baker's transformation we have several choices. 
We can take, for instance, 

with z' = z and x and y given by ( I )  or 
(x. Y ,  2 )  + (x', Y ' ,  2 ' )  (20) 

y ' = @ y )  z ' = { 2 z )  x ' =  ( x + [ y ' ]  + [ 2'])/4. (26) 
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F b r e  1. Baker's transformation: ( a )  initial configuration, ( b )  squeezing, ( c )  cutting and 
( d )  fusing; ( b ) - ( d )  correspond to one step of the transformation. 

If we have, for example, equal amounts of two liquids (black, A and white, B in 
figure l) ,  the repeated application of Baker's transformation produces a lamellar 
structure. Thus, if the initial boundary was a vertical plane at x = f, after n transforma- 
tions, (1) or (Za), the system will consist of 2" alternating parallel A and E layers of 
equal width. We will consider the substances as being fully mixed at the time T, when 
the striation thickness becomes comparable with the intermolecular distances (of the 
order of 1 A). Thus T -To log, IO-* = 26 s. 

I" L..., IUC',,, I,., "il l,,",. 'ZL . ILII 'ZLI"II>  W.11C.ll ,310 I Cd"J " 0 1 L 1 L 1 , .  "1 CUUISO,  I"C 

boundaries between the components are not ideally plane (the left column of figure 2 
shows the case of a piecewise-flat boundary). After some iterations of Baker's transfor- 
mation the boundaries between layers will flatten out; however, the layers themselves 
will display the random thicknesses which follow from the distribution p,(h) of the 
initial layer widths h. Denoting the distribution of striation thicknesses after the nth 

TA fir +La In+ .." I..-!. -+A-&:--- ... h:A. --- , - - - I . .  ..-&:--a Ar AL. 

itcminn by ?"(!!) !?ne h.5 

Of course, in reality the random form of the initial boundaries is not the only origin 
of random thicknesses of striations. Other obvious sources of randomness in the mixed 
patterns are the influence of thermal motion and the randomness introduced by 
(possibiy chaotic) aspects of  ihe mixing procedure, say in a iurbuient iiow. 

Figure 2. Evolution of a piecewise-Hat boundary during the lwo first steps of Baker's 
transformation. 
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Although Baker’s transformation is very simple, its discrete nature makes it awkward 
to use it directly in a reaction-diffusion scheme. We aim at obtaining a continuous 
scheme, more in line with differential equations. For this we start by noticing the 
correspondence between a system undergoing Baker’s transformation and a system to 
whom we attach statistical copies of itself. (There are several ways to proceed, which 
all lead to models of the same nature.) 

For macroscopic systems, during the whole time of the reaction the diffusion length I,=m is much smaller than the system’s size I , .  We are thus free to specify the 
boundary conditions as we wish. Taking our volume to be a square (or a cube), we 
can attach copies of it at each boundary. Thus we view our original volume as being 
immersed in a sea of copies filling the whole plane (or space). Now let us focus on 
the infinite subsystem along the x-axis; it is a linear array of copies of the initial 
volume. Baker’s transformation now shortens the x-length by a factor of two. Physically 
we can consider each stage of Baker’s transformation as being due to the application 
of pressure along the x-axis, the pressure being such that all x-distances are shortened 
by half. In two dimensions we imagine half (in the case of the three-dimensional 
transformation ( 2 b )  three-quarters) of the material to be squeezed out. We can now 
look at our array of copies through the window corresponding to the size of the initial 
volume. Evidently, for identical copies of the system and strictly vertical planes we 
recover Baker’s transformation. However, here we can easily generalize the procedure 
by taking statistical copies of the original system. This corresponds to the ensemble 
idea in statistical mechanics and leads to an important new aspect: for identical copies 
Baker’s transformation leads to correlations between distant sites of the system, because 
after a few transformations distant regions behave in identical ways. For statistical 
copies such correlations do  not arise. Also note that because of statistical fluctuations 
and because we view the development through a restricted window, the amounts of 
different reactants inside the window are only equal on the average, but are not exactly 
equal at each moment. This, however, makes no difference when only ensemble 
averaged quantities are considered, as long as the diffusion length is small compared 
with the system’s size. 

As a last step, we can now dispense from considering a discrete model, and we 
view the squeezing to occur continuously, as exemplified in figure 3. Our extension of 

Figure 3. The model of mixing used: an array of parallel striations under pressure seen 
through a window. 
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Baker’s model for mixing is thus a lamellar system with an initial distribution of 
striation thicknesses po(x) which undergoes a contraction along the x-axis. In line with 
our ideas we shall mainly consider a continuous contraction which renders the charac- 
teristic scale of a system e times smaller each T seconds. We note that similar results 
are obtained when the contractions occur at discrete time intervals, where the distances 
change by a factor of 2 at times f = nT,, and T~ = T In 2. Note that the local structure 
and the statistical properties of the striations (but not their widths) are preserved at 
all times. 

To finish specifying the model we have to discuss the initial distribution of layers. 
We take the initial thicknesses of different layers as being independent random vari- 
ables, given by the distribution p,(x). For simplicity we take the same distribution 
p,(x) for both reactants. Here we introduce the first two moments L and S o f  p,(x) 
which will be repeatedly used in the following: 

= jnm xp,(x) d x  = jOm x2p,(x) dx. (4) 

As our model deals with the two layers of liquid whose total width is equal to the 
system’s size I,, both L and S are finite. In other problems one also encounters the 
case of infinite S, as discussed by us in [121. 

The main result of this section is that we are able to model mixing through a 
continuous one-dimensional spatial transformation. This allows us to implement the 
transformation readily into a reaction-diffusion scheme, as we now proceed to show. 

3. The main equations 

The bimolecular irreversible reaction A + B + 0 in a system without external constraints 
can be described by the following pair of differential equations: 

where cA(r, 1 )  and cB(r, t )  are the local concentrations of reactants, D is the diffusion 
constant, and K denotes the microscopic reaction rate constant. The form K G C ~  is a 
widely-used approximation for the reaction term; see [6] and [12] for the discussion 
of its limitations. 

The squeezing of the system may now be described by introducing the field of 
velocities of the liquid. The full hydrodynamical description of such a field, correspond- 
ing to real squeezing, is complicated, but fortunately we do not need such a full 
description. In an infinite system under constant pressure the liquid motion can be 
viewed as being a homogeneous dilational flow whose velocity field is U, = X k  a,*xk 
(where Z;aii = O  due to incompressibility) (see e.g. [ 161). Moreover, in our model the 
system is always an array of parallel striations perpendicular to the x-axis; the external 
pressure is applied parallel to the x-axis. Therefore the problem can be treated as 
essentiaiiy one-dimensionai and oniy the x-componeni of the veiociiy is significant. 
In the case of  a continuous contraction this component depends on the location x 
with ar.y = 1 f 7: 

u(x) = -x/r. (6) 
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To see this consider a liquid domain first located at x,, at time 0. Through the contraction 
its coordinate changes. The position of the domain at time I is x(f)=x,,exp(-f/T). 
The velocity U of the domain is U = -x, exp(- t / r ) / r  = -XI T. Note thus that the velocity 
depends only on the current location (it does not depend on time or on the initial 
location of the domain). 

We now envisage the reaction to occur in a system with the superimposed velocity 
field U, given by (6). Now, when one considers a reaction in a moving liquid ( 5 )  holds 
locally in the system of coordinates moving together with the liquid domain considered 
(Lagrangian coordinates, R, e.g. [9, p 201). 

We need, however, a description of the process in a fixed frame corresponding to 
our window (Eulerian coordinates r ) .  Therefore we need to relate functions f in the 
moving frame to the properties o f f  in the fixed coordinate frame. The procedure is 
as usual: one takes the moving and the fixed coordinate systems to coincide at f = 0. 
Thus the Eulerian coordinates of the liquid domain considered are 

I M Sokolou and A Blumen 

r ( f ) = r ( O ) +  u ( r ( t ' ) ,  t ' )d f '  (7) J"' 
' where u ( r ,  f )  is local liquid velocity and r ( 0 )  = R. Now 

where J / J I  and V are the partial time derivative and the gradient of f  as functions of 
the variables ( r ,  I ) .  One can now introduce the operator (called material derivative 
in VI) 

a - + U . V  
st J f  

(9) 

which gives the partial time derivative in a coordinate system moving with the liquid 
domain. Hence in an imposed velocity field one has, as a generalization of ( 5 ) ,  but 
now restricted to one dimension: 

Here one usually has to assume that the gradient of velocity is small enough, namely, 
that the characteristic reaction rates which correspond to particles' collisions due to 
the velocity gradient and to the inertial forces (disregarded here) are small compared 
with the diffusion-controlled reaction rate K.  When both reactants are moving the last 
quantity is given by K = 8 ~ D r ,  where ro is the reaction radius. In the case of purely 
diffusion-controlled reactions K is around lo-'' cm' s-' for a reaction radius r, around 

If we rewrite now (10) as a pair of equations for q ( x ,  I )  = cA(x, f ) -c .dx,  f )  and for 
cm. 

s ( x , ~ ) = c , ( x , ~ ) + c ~ ( x , L )  we obtain 

(11) 
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and 

Here we see that the first equation is a linear equation of one variable and that the 
second one contains 9(x ,  1 )  as a parameter. These forms are simple enough to be 
amenable to a theoretical analysis. 

4. The case of extremely fast reactions 

First let us consider the case of a very fast reaction K +CO. The experimental relevance 
and the theoretical significance of this model is considered in [9, pp 13 and 282ffl. 
The results of this section are also of much importance in our considerations of the 
case of finite reaction rates, to be discussed in section 5 .  According to (12) the limiting 
case K + a7 corresponds to sz = 9*, or s = 191 everywhere. This means that the system 
consists of domains occupied either by A or by B particles; the lines (surfaces) for 
which q = 0 give the boundaries between the domains. One hence has: 

c.4 = qO(q) cg = -qe(-q) (13) 
and one can describe the reaction-diffusion process under mixing with the help of 
only one linear equation, namely, equation (11). Furthermore (11) can be reduced to 
a simple diffusion equation with partial, not material, derivatives. This can be achieved 
by a change of variables, whereby (5, q )  are related to ( x ,  1 )  via 

5 = x+(t) 7 = jo' + 2 ( ~ )  d t  (14) 

with 

+ ( O  =exp(t/T). (15) 

Equation (15) is normalized in such a way that for 1 = O  (5, q )  and ( x ,  I )  coincide. In 
the variables 5 and q one has instead of ( 1  1) 

which can be seen by using 

J a a J 
and a 

-= + 2 ( f ) - + x + ' ( t ) -  
J I  J7 Jl  Jx 

in (11). From (14) and (15), q obeys 

7(1)=[exp(2t / . r ) -1]~/2.  (17) 
The generalization to cases where the contraction rate is time-dependent is rather 
obvious: then + ( r )  is given by 

instead of (15). The generalization of the following theory to such time-dependent 
contraction is quite straightforward, and we will restrict ourselves to the simpler form, 
equation (15). 
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Equation (16) can be easily solved using its Green’s function. The Green’s function 
of (16) is 

G(5, q )  = ( 4 ~ r D q ) - ” ~  exp(-5*/4Dq). (19) 

Because of the coincidence of both sets of variables at f = 0 the initial realization of 
the A and B domains, q ( x ,  0), is the same for q = 0 in the (5, T J )  variables. The temporal 
development of 9(5, q )  is thus 

m 

9(5,q)=l_m9(1.0)C(5-x.n)dx. (20 )  

Note ttiat the initial distribution of 9 ( x ,  0) is bimodal: q = co in the A lamellae and 
9 = -c, in the B lamellae. Furthermore, since the initial distribution of q ( x ,  0) has a 
finite correlation length I the integral in (20)  can be approximated by a sum of E G / l  
independent variables. Here E G - a  is the characteristic scale of the Green’s 
function, equation (19). Thus for ZG >> I the distribution of q(.& q) will tend to a 
Gaussian, according to the central limit theorem. In the intermediate time regime, for 
which EG - I the distribution is ‘smoothed‘ bimodal. Moreover during the whole time 
development the mean value of 9 vanishes: (9( 5, 7)) = 0. 

The set of transformations, equation (14) (the so-called ‘warped-time transforma- 
tion’), was first introduced by Ranz [17]. They are widely used for the description of 
diffusion in liquid flows (see e.g. [9]), We would like to stress here a very important 
property of these transformations, namely the conservation of spatial averages. This 
property makes possible the further theoretical analysis. 

Note that since the change of variables from (x, f )  to (6, 7) is linear in x and since 
the variable q depends only on f (but not on x) all the spatial averages are the same 
when averaging over x or over 6;  furthermore both coincide with the ensemble averaging 
over the initial conditions: 

wherefis an arbitrary function o f q  only, A = A ,  exp(f/T) and the symbol (. . .)denotes 
the ensemble average. 

In the case of extremely fast reactions one finds domains occupied by A or by B 
molecules, exclusively. The overall reactant concentrations c ( f )  therefore obey: 

C ( f ) = ( G ( X ,  f ) ) = ( C ” ( X ,  t))=(Iq(x, f)I)/z, ( 2 2 )  

According to (211, ( I q ( x ,  f)l)=(lq(S, q(f))I), and (Is([, T ( f ) ) l )  is bounded by the 

d%(9?5, q(f)))”2s(19(6, ~ ( f ) ) l ) S ( 9 ~ ( 5 .  r)(l)))1’2 (23) 

following from the relations between (9’) and (191) for the limiting cases of bimodal 
and Gaussian distributions. Hence 

inequalities 
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The difference between the upper and the lower bounds is only 25%. If we accept this 
order of accuracy, the only thing needed in order to evaluate c ( t )  for infinitely fast 
reactions is to calculate (9‘(5, q(t)))-the second moment of the distribution of q at 
time 1. From (20) one has by a simple change of variables 

m 

9(5, V I = / - -  q(C- l ,O)G( i ,  T I  d l  (25) 

and thus 

( q 2 ( 7 ) ) = M 5 ,  ?ME, 7)) =(I[ G(i, 7 ) d C - L  OMC-a, O)G(a, II) d l d a )  

= W, ’1)(q(5-i,OO)q(Z-a,oO))G(a, 7) d l d a .  (26) 

Here we could interchange integration and averaging, because G(E,?) is a non-random 
function which does not depend on the particular realization of the disorder. 

For systems which are statistically homogeneous on average, the initial correlation 
function g(x,, x2) of the 9 defined through 

g ( X i , X 2 ) = ( 9 ( X , , o ) 9 ( x , , o ) )  (27) 
depends only on the difference of the arguments x, and x2, i.e. g(xl ,  x2) = g(xl -x2). 
Hence 

(28) 

One can now remark on the double convolution on the RHS of (28), since G(5, 7) is 
symmetric in 5. This allows us to express (q‘(1)) in terms of the Fourier transforms of 
g and G. Setting T ( k )  = I  g(x) exp(ikx) d x  for the Fourier transform of g, and using 
the explicit Fourier transform exp(-2D7k2) of G(5, II), equation (19), one obtains 

(q2(T) )=-  r(k)exp(-2D7k2) dk. (29) 

For small times corresponding to 7 << 12/D one has (q2 (  7)) = ( 1 / 2 ~ )  I I-( k )  dk = g(0) = 
ci  as initially q ( x )  = *c,.  At larger times one can make use of the very fast (exponential) 
growth of q ( t ) ,  see (17). Changing the variable in (28) into x = a  k one obtains I I-(*/=) e-X1d*=[8rrD~]-”2r(0).  (30) 

The time dependence ( q 2 ( f ) )  follows now from the explicit form of T ( f ) ,  equation 
(17). Now it only remains to evaluate the quantity r(0) = j  g(x) dx. The correlation 
function g(x) of concentrations in a lamellar system was calculated in [12]. According 
to the results of this work, for finite S and L with S f  L2 (this is the general case) one 
has 

271 ‘ I  
m 1 

( 9 2 ( 7 ) ) = 2 7 1 m  _m 

From (31) we now immediately obtain via (30) 
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As ~ ( t ) = ( q ~ ( t ) ) ” ~ ,  in accordance with (24) we have 

I M Sokolov and A Blumen 

c ( r ) =  a1’2[exp(~t /7)-~]-’’2 (33) 

~ ( t ) = a ” ~ e x p ( - t / 2 . r )  (34) 

with a = e:( S - L 2 ) / L m .  For large enough times (of the order of a few units of 
T), when exp(t/T)>> 1, the decay of c ( t )  is exponential: 

and follows the mixing pattern. A heuristic derivation of (331, which also shows that 
(31) is very reasonable, is given in the appendix. 

5. The case of a finite reaction rate 

In the previous section we derived that for very fast reactions the decay is exponential. 
This is, of course, related to our mixing model, which enforced an exponential decay 
on the pattern of striation lengths. Evidently, this mimics the situation when after long 
stirring the initial distribution of reactants is forgotten and the system becomes 
homogeneous. In this section we focus on reactions where K is not infinite: this allows 
us both to assess the range of validity of the model of extremely fast reactions, and 
also to display the temporal range in which mixing destroys the influence of the initial 

We first remark that for an ensemble-averaged situation (s) is independent of x. 
Hence also (ds/dx) = 0, which implies that both (DAs) and (~0s) vanish. We now turn 
back to (12). By averaging this equation over the ensemble of realizations one obtains 

--->:A:--- 
CVIIUIIIVIIJ.  

Now we approximate in this expression ( s 2 )  by ( s ) ~ .  We note that s is independent 
of x both in the initial state, where (apart from the boundaries between the domains) 
s(x, 0 )  = cu and also in the late, fully mixed states of the reaction. In both these limiting 
cases the relation ( s 2 ) = ( s ) *  is well-obeyed. In the intermediate regime (s2) and ( s ) ~  
can differ only by a factor of order of unity, since the distribution of s is well-behaved. 
Setting ( s2 )  = ( s ) ~  in (35) we obtain instead of (12) an ordinary differential equation: 

whereweset s ^ ( t ) = ( s ( x ,  I ) ) = ( s ’ ( x ,  1))”’and~(f)=(q2(t))”2.N~~we~hallshowthat 
at large times (when 4 tends to 0), equation (36) has the solution $ ( I )  = 2/10, while at 
small times one has i= i j ,  in accordance with (24). We shall also evaluate the characteris- 
tic time for the crossover. 

We first note that for the times larger than a few  units one has i 2 ( t )  = a  exp(-t/r)  
(see (32)). Substituting this form into (36) and introducing as a new variable z =  
exp(-r/.r) we obtain in this time regime the equation 

Equation (35) is a Riccati equation [IS,  p 211 and can be reduced to a second-order 
linear equation for the auxiliary function + ( z ) ,  where 
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This new equation reads as follows: 

d2+ d 4  a r 2 K 1  
4 = O  z2 - + 2- - z - 

dz2 dz 4 (39) 

and is a Bessel equation [18, p 4401. Its general solution is 

6 (2) = c, &(i TK 6) + c2 Yo( i TK &) (40) 

where J o ( x )  and Yo(x)  are the Bessel and the Weber’s functions of zeroth order and 
C, and C2 are arbitrary constants. Now, since f(z) is a real function, @ ( z )  is also real. 
To simplify (40) one can express it in terms of modified Bessel functions since one 
has Jo(ix)= I o ( x )  and Y o ( i x ) = i l o ( x ) - ( 2 / i r ) K o ( x )  (see [19, equations (9.6.3) and 
(9.6.5)]). In order to obtain a real solution 4(z) one must thus take C ,  = -iC, with 
C, real. In this case one has 

2 
+ ( z )  = -C2- K , ( x ) .  (41) 

ir 

From (38) we obtain now i ( z )  as 

%Z) =-(2z/KT)’$’(Z)/@(Z) (42) 

6‘ being the derivative of 6. Making use of the relation K ; ( x )  = - K , ( x ) ,  [19, equation 
(9.6.27)], one obtains therefore 

As the coefficient KT&- 10’’ is much larger than unity, for small enough times the 
ratio on the RHS of (43) is close to unity. One obtains 

S ( Z ) = G  (44) 
which corresponds to s(r) = q ( t )  = al l2  e x p ( - t / 2 ~ )  for moderately long times 1:  these 
are larger than a few units of T (so that G( I )  = exp(-t/2r) holds well) but such 
that the argument TK& of the Bessel functions is still large, l < t / ~ < Z l n ( ~ ~ J i ? ) .  
For larger times t > 2 ~  In(TKJ;;) the argument in (43) becomes significantly smaller 
than unity. Here we have to use the forms for small values of the arguments for 
modified Bessel functions: K o ( x )  - -In x, K l ( x ) -  I/x [19, equations (9.6.8) and 
(9.6.9)]. In this case we obtain as leading behaviour 

2 T  
i ( z ) = - -  

K In z (45) 

which corresponds to 

;(t)=2/Kt. (46) 

This expression is the standard chemical kinetics form. The change from one type of 
temporal behaviour to another occurs for values of the argument of the order of unity; 
this corresponds to a time of the order of To, given by 
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Figure 4. The evolution of the reactant concentrations c ( t )  in a mixed system with a finite 
microscopical reaction rate I( Displayed are the results far c(0) = I O z 2  cm-' and for 
N = IO-", and lO-"cm' 5.' (top to batlom). Shawn an a logarithmic scale is the 
ratio e(t)/c(O); the time is given in units a i  7. the typical miring time. 

Substituting in (47) the values of parameters discussed above we obtain for an extremely 
fast, purely diffusion-controlled microscopical mechanism of reaction, which corre- 
sponds to K = 10~1 'cm3 sC'. 

T0=377 = 53 s. (48) 

Now To is twice as large as 7, the full mixing time in the absence of the reaction, see 
section 2, which was around 26 s. 

We can also evaluate the behaviour of the concentration c( 1 )  numerically, which 
is given by c(t)=s^(1)/2. We d o  this by using polynomial approximations for the 
modified Bessel functions in different ranges of the parameters (see [19, section 9.81). 
The results of the computations are shown in figure 4. All curves correspond to the 
same value of a, taken to be a = lod6 cm-6, but to different values of K :  these vary 
from lo-'' cm' s-' (corresponding to a diffusion-controlled microscopical mechanism) 
to em's-' (corresponding to a rather slow, reaction-controlled mechanism). The 
small-time behaviour is exponential in all cases, and shows up as a straight line for 
the axes chosen in figure 4. At longer times the crossover effects are clearly seen. From 
the figure we can infer that for K = lo-'' cm' s- '  the crossover time is around SOT, 
somewhat larger than the value To given by (47). For smaller values of K ,  the crossover 
moves to shorter times; thus for K = cm' s-' one has a crossover regime around 
20T, still comparable with the full-mixing time T of section 2. Thus, even for this rather 
slow reaction, standard kinetics are recovered only when the concentration is smaller 
than of its initial value. This again shows that the experimentally important stages 
of the reaction are always controlled by mixing. 

6. Conclusions 

We conclude that for usual mixing devices and reactions, in the range of parameters 
considered here, the course of reaction is governed mainly by mixing and not by 
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diffusion or kinetics. This mixing-controlled type of behaviour corresponds (in our 
model) to an exponential decay of the reactants’ concentration. The standard diffusion- 
controlled regime (for K = lo-’’ em's-') establishes itself very late in the course of the 
reaction; for the parametes used here this corresponds to about a minute of mixing 
(in the best, ideal mixing device!). At this time the concentration of reactants is down 
by something like 10 orders of magnitude compared with its initial value. Of course 
one can choose the microscopic reaction rate to be very small so that in a reaction- 
controlled situation the crossover from the mixing-controlled behaviour to the large- 
time, l l t  behaviour, may occur at shorter times. Nevertheless, even in this case the 
mixing-controlled mechanism stays very important, provided that the reaction rate is 
high enough to ensure that a reasonable amount of particles react during a mixing 
cycle of duration 7. 
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Appendix 

In this appendix we will give a heuristic justification of (33), the exact derivation of 
which needs the use of the explicit form of g(x) or  T ( k )  (see [12]). A very simple, 
heuristic explanation of the final result, equation (33), starts from the ideas of the 
scaling approach used in [3] for reactions in fully mixed but disordered systems. 

If we consider (16) and treat q as the time and 5 as the space variable we can 
introduce a characteristic diffusion length to in <-space, tu - JD1). The quantity to 
is of the same order of magnitude as the characteristic extent of the Green’s function 
S G  introduced in section 5 .  At time q the profile of concentrations is smoothed out 
by diffusion on the scale tu, but fluctuations on larger scales than 5” survive. Thus, 
at time q the system can be viewed as consisting of independent compartments of 
length tu, each compartment containing only the reactant that initially was in excess 
in this part. This residual amount of reactant is of the order of 
and cR are the total widths of the A and the B lamellae in the compartment considered. 
If <,, >>lo, the mean number of A and B striations inside a compartment of length to 
is n =&,/lo, the mean value of the difference <A - tR is, of course, zero and the squared 
dispersion of this difference, is of the order of 2 n d .  where U’= S -  L’ is 
the squared dispersion of the length of one striation. 

The averaged amount of the residual reactant is co(ltA - CBI)-  co((cA - < B ) ’ ) ” 2 ,  and 
its average concentration c( 1 )  -co(1tA - 

- CBI, where 

is of the order of 

After substitution of the explicit form for q, equation (17), in ( A l )  we regain (33) up 
to the numerical coefficient ( 4 ~ ) ~ ‘ / ~ = 0 . 5 3 1 . .  . . 



3700 

References 

I M Sokolov and A Blumen 

[ I ]  Ovchinnikov A A and Zel'dovich Ya B 1978 Chem. Phys. 28 215 
[2] Toussaint D and Wilcrek F 1983 1. Chem. Phys. 78 2642 
[3] Kang K and Redner S 1985 Phyr. Rev. B 32 435 
[4] Sokolov I M 1986 JETP Lel!. 44 67 
[5] Blumen A, Klafter J and Zumofen G 1986 Optical Specrroseopy o/Glosrer ed I Zschokke (Dordrecht: 

161 Kuzavkov V and Kotomin E 1988 Rep. Prog. Phys. 51 1479 
[i] Ottino J M 1982 J.  Fluid Meeh. 114 83 
[8] Ottino J M, Leang C W, Rising H and Swanron P D 1988 Nolure 333 419 
[9] Ottino J M 1989 The Kinematics of Mixing: Slrerehing, Chaos and Transporr (Cambridge: Cambridge 

Reidel) pp  199-265 

University Press) 
[IO] M u u i a  F J and Otfino J M 1989 Phys. Rev. Lerr. 63 47 
[ I l l  M u u i o  F J and Ottino J M 1989 Phys. Re". A 40 7182; 1990 Phys. Rev. A 42 5873 
[I21 Sakolov I M and Blumen A 1991 Phys. Reu. A 4 3  2714 
iij] Argyrakis P and Kopeiman R i98i ;. Fhyr. C k m .  9i  2699 
[I41 Argyrakis P and Kopelman R 1989 J. Phys. Chem. 93 225 
[IS] Gray D E (ed) 1972 American Inarirulr of Physics Handbook (New York: McGraw-Hili) pp 2-221 
[I61 Landau L D and Lifshitz E M 1959 Course o/ Theorerico! Physic3 "01 6 Fluid Mechanics (Oxford: 

[I71 R a m  W E 1979 AIChE Journol 25 41 
[I81 Kamke E I977 Differenliolgleichungen (Stuttgart: Teubner) 
[I?? Ahrr-ovitz hn 2nd Stegut! ! P. (ed! I972 .Hmdbnnk nf.Kn!hemn!h?! Ft!nc!io.?: (New York: Dowr) 

Pergamon) 


